

PQC Call to Action

William Gee, Vice Chair, Asia PKI Consortium Hong Kong | Nov 2025

Q-Day fast Approaching

Google

Quantum Echoes: step towards real-world applications

IBM 2025-2029 Deliveries

Loon (2025) → Kookaburra (2026) → Full fault-tolerant (2029)

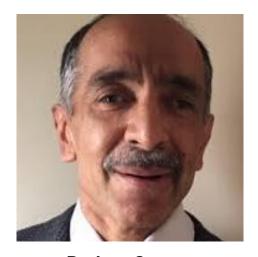
Quantinuum (Honeywell)

New version within 2025 will be 1 billion times faster

Microsoft

"Majorana 1" topological core in Feb 2025

Google


Willow achieved a major breakthrough in Dec 2024

The two algorithms

Prof. Peter Shor

Dr. Lov Grover

Transition timeframe: US NIST Recommendations

Note:

- 112 bits security strength equals 2048 bits, and 128 bits equals 3072 bits
- Typical key length for digital certificates is currently 2048 bits (3072 bits for code signing)
- The NIST recommendations effectively render today's cryptographic algorithms obsolete by 2035

NIST Internal Report NIST IR 8547 ipd

Transition to Post-Quantum Cryptography Standards

Table 2: Quantum-vulnerable digital signature algorithms

Digital Signature Algorithm Family	Parameters	Transition
ECDSA [FIPS186]	112 bits of security strength	Deprecated after 2030
		Disallowed after 2035
	≥ 128 bits of security strength	Disallowed after 2035
EdDSA [FIPS186]	≥ 128 bits of security strength	Disallowed after 2035
RSA [FIPS186]	112 bits of security strength	Deprecated after 2030
		Disallowed after 2035
	≥ 128 bits of security strength	Disallowed after 2035

Table 4: Quantum-vulnerable key-establishment schemes

Initia	l Publ	ic Dra	f+

Key Establishment Scheme	Parameters	Transition	Dustin Moody Ray Perlner Andrew Regenscheid Angela Robinson
Finite Field DH and MQV [SP80056A]	112 bits of security strength	Deprecated after 2030	David Cooper
		Disallowed after 2035	
	≥ 128 bits of security strength	Disallowed after 2035	ble free of charge from: 0.6028/NIST.IR.8547.ipd
Elliptic Curve DH and MQC [SP80056A]	112 bits of security strength	Deprecated after 2030	
		Disallowed after 2035	
	≥ 128 bits of security strength	Disallowed after 2035	
RSA [SP80056B]	112 bits of security strength	Deprecated after 2030	
		Disallowed after 2035	
	≥ 128 bits of security strength	Disallowed after 2035	

Source:

https://www.quantum.gov/nist-draft-report-on-pgc-transition/

Symmetric and hash algorithms

Problem Family Post-Quantum Security Cryptographic Construction Primitive Public-Key Encryption RSA Integer Factorization X Shor: ~0 bit Digital Signature Scheme **ECDSA** EC Discrete Logarithm X Shor: ~0 bit (EC) Discrete Logarithm Key Establishment Scheme (EC)DH X Shor: ~0 bit Symmetric-Key Encryption AES-128 Block Cipher Grover: ~64 bit Block Cipher AES-256 Grover: ~128 bit Hash Function SHA2-256 Merkle-Damgård Grover: ~128 bit ~128 bit SHA3-256 Keccak Grover:

Table 4: Security strength time frames

Se	Security Strength		2031 and Beyond
< 110	Applying protection	Disallowed	
< 112	Processing	Legacy use	
112	Applying protection	Accontoble	Disallowed
112	Processing	Acceptable	Legacy use
128	Applying protection and processing information that is already protected	Acceptable	Acceptable
192		Acceptable	Acceptable
256		Acceptable	Acceptable

Source:

https://csrc.nist.gov/pubs/sp/800/57/pt1/r5/final

https://www.bosch.com/stories/quantum-computing-threat-how-to-prepare-for-a-smooth-transition-to-post-quantum-cryptography/

NIST Standardisation Status

NIST Standards

Key-Encapsulation Mechanisms:CRYSTALS-KYBER (2022) | FIPS 203
HQC (2025) | FIPS under development

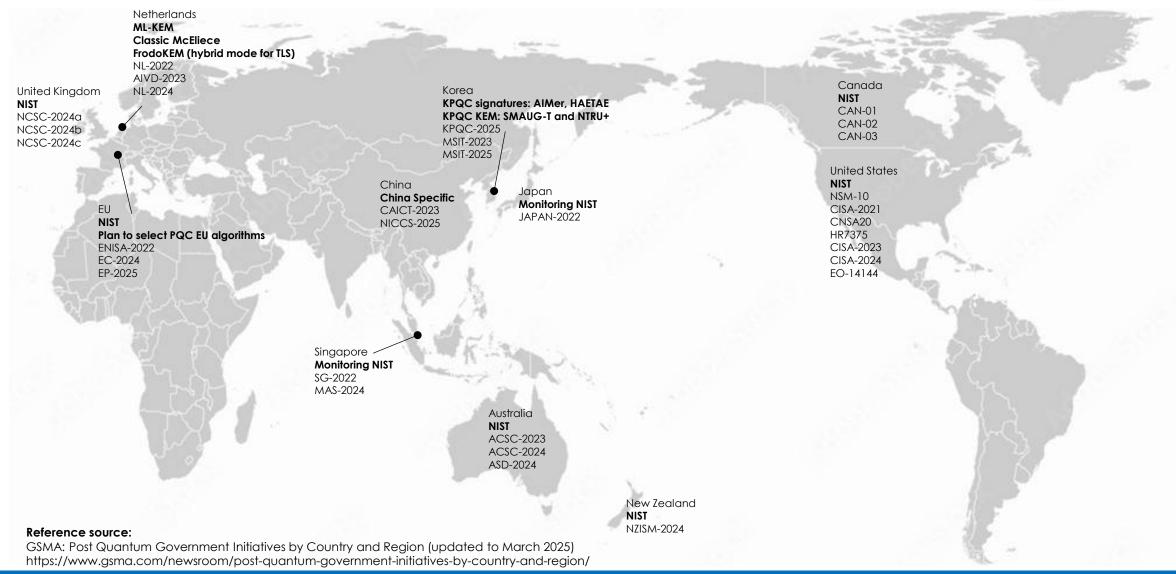
Digital Signature Algorithms: CRYSTALS-DILITHIUM (2022) | FIPS 204 SPHINCS+ (2022) | FIPS 205 FALCON (2022) | FIPS under development

NIST Ongoing Activities

Digital Signatures Algorithms:CROSS, FAEST, LESS, SQsign, HAWK, MAYO, Mirath, MQOM, Perk, RYDE, SDitH, QR-UOV, SNOVA, UOV

Encryption: BIKE, CLASSIC McEliece

NEWS


Examples of other enabling standards

- OpenSSL 3.5: support for ML-KEM, ML-DSA, SLH-DSA
- ❖ IETF/ISO:
 - Broad alignment with NIST recommendations
 - Instances of selective adoption, e.g. LMS/XMSS for IETF/ISO 14888-4
 - Ongoing work for: IPSec, IKEv2, TLS 1.3, X.509
 - ❖ Non-NIST algorithm also expected, e.g. FrodoKEM
- **❖** IEEE:
 - ❖ IEEE 802.11 (work ongoing)
- ***** ETSI:
 - TS 104 015 Quantum-Safe Hybrid Key Exchange
- Quantum secure smart cards

Divergent national and regional strategies

Threat vectors...

HNDL vs. TNFL

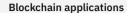
Harvest Now, Decrypt Later Trust Now, Forge Later

Beyond cybersecurity...

Cryptography impacts every aspect of our digital architecture

Asia PKI Consortium

Critical infrastructure


Code updates, control systems, oil pipelines, electric grids, car systems

Internet Protocols

Domain Name Service (DNS), Hypertext Transfer Protocol (HTTPS), Telnet, SFTP

Coin wallets, transactions, authentication

Digital signature laws

EiDAS - PDF Advanced Electronic Signature – (PAdES), Advanced Electronic Signatures (AES)

Enterprise applications

Email–PGP, identity management PKI/LDAP, virus scanning patterns, PKI services

Financial systems

Payment systems (EMV, SWIFT, settlement systems, fintech)

Reference source:

IBM: Secure the post-quantum future (published 3 October 2025) https://www.ibm.com/thought-leadership/institute-business-value/en-us/report/2025-quantum-safe-readiness

Remediation...

Balancing internal ownership with vendor dependency

Compounding this uncertainty is an overestimation of the role of external vendors in solving quantum-safe remediation issues. 62% of respondents believe vendors will handle quantum-safe transition requirements for them, while 56% continue to view quantum safety as purely a technical issue.

Reference source:

IBM: Secure the post-quantum future (published 3 October 2025) https://www.ibm.com/thought-leadership/institute-business-value/en-us/report/2025-quantum-safe-readiness

Resilience

Network Infrastructure

Applications

Data

Identity management

Legacy platforms and devices

B2B services

Reference source:

IBM: Secure the post-quantum future (published 3 October 2025) https://www.ibm.com/thought-leadership/institute-business-value/en-us/report/2025-quantum-safe-readiness

... Reframe quantum-safe preparation not as insurance against a specific future risk, but as a capability that delivers business value and transformational benefits regardless of when quantum computing capabilities mature

Cryptographic agility

Algorithmic

Ability to select and switch algorithms

Operational

Rollout processes and deployment

Automation

Enabling architecture and configuration, and consensus on standards and protocols

Governance

Policies, rules, compliance and regulatory frameworks

Ecosystem

Coordination with vendors, suppliers, and regulators

PKI certificate issuance solution

Validity checks for trust root; quantum-safe trusted time; public key size; dependencies...

Process and People

Technology

Meaning of Quantum-Safe for HSMs: What is NOT

- HSMs without quantum-safe roots of trust (RoT) injected at manufacturing time are not quantum-safe and will never become quantum-safe
- Classic HSM providing PQC algorithm support does not make it quantum-safe
- Adding QRNG (Quantum Random Number Generator) to a classic HSM does not make it quantum-safe
- Classic HSM to HSM communications are subject to Harvest Now/Decrypt Later attacks so this need to be quantum-safe also
- Obtaining FIPS 140-3 validation of a classic HSM does not make it quantum-safe

Call to Action

Discovery

Inventory

Demos and Pilots

Cryptographic Library

Discussions and Sharing

THANK YOU

